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1. Introduction

Flow-induced vibrations (FIV) are a well known problem in Nuclear Engineering, since reactors
and components that compose nuclear power plants are susceptible to this phenomenon [1,2].
The fluid-structure interaction (FSI), present in several systems that integrate the plant, can
generate undesirable vibrations and affect the plant operation.

Pipes are essential components in nuclear industry and are mainly responsible for fluids trans-
port. Therefore, they are subject to flows and may suffer excessive vibrations, which could cause
operational failures, resulting in a potential risk to safety, besides economic losses.

The objective of this work is to develop a mathematical tool for the dynamic analysis of a
pipe conveying a single-phase fluid. The method used to solve the problem governing equations
was the Generalized Integral Transform Technique (GITT), which is an analytical-numerical
methodology that transforms partial differential equations (PDEs) into an ordinary differential
equations (ODEs), bringing the advantages of a hybrid solution to problems involving fluid flow
and heat conduction.

2. Methodology

Consider a clamped-clamped pipe conveying a single-phase fluid, modeled as an Euler-Bernoulli
beam [1,2]. Fig. 1 represents the physical model geometry in which a pipe of length L, cross-
sectional area A, mass per unit length m, bending stiffness EI, transportS a fluid of mass per
unit length M and velocity U .

Figure 1: Clamped-clamped pipe conveying fluid1.
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The fluid-structure interaction is represented by a set of governing equations that couple fluid
dynamics and structural mechanics, and in this problem can be represented by the following
dimensionless equation for small lateral displacements,
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where w is the dimensionless lateral deflection of the pipe, β is the mass ratio, x is the dimen-
sionless axial coordinate, u the dimensionless flow velocity.

The dimensionless boundary conditions are given as follows:

w(0, t) = 0, w(1, t) = 0,
∂w(0, t)

∂x
= 0,

∂w(1, t)

∂x
= 0. (2)

The Generalized Integral Transform Technique (GITT) was applied to solve the equations. This
approach is based on the creation of a pair of equations that represent the transformation and
inversion of the original problem, using the series expansion obtained from an associated Sturm-
Liouville problem.

3. Results and Discussion

The convergence analysis of the integral transform solution was performed using GITT for
different truncation orders, NW = 4, 8, 12, 16, 20 and 24, analyzing the aspects of displacement
and time history.

The dimensionless transverse displacement w(x, t) convergence was analyzed at different posi-
tions of the pipe conveying a fluid, and it was examined from the increase of the truncation
terms NW at the dimensionless times t= 25. Fig. 2 illustrates the displacement profile for
different combinations of u and β, showing that for convergence with three significant digits it
is necessary a truncation order NW ≤ 12.

(a) (b) (c)

Figure 2: Dimensionless transverse deflection convergence analyses of w(x, t) for t = 25 with
different truncation orders NW for (a) u = 4.5 and β = 1.0, (b) u = 4.5 and β = 0.5 and (c)
u = 1.5 and β = 0.5.
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Similarly, the temporal evolution of the transverse displacement at the center point of the pipe
is shown in Fig. 5. Considering the time interval, t ∈ [45,50], and also varying β and u, it is
noticed that the convergence is quite favorable.

(a) (b) (c)

Figure 3: Time history transverse displacement convergence analyses at the center point of the
pipe w(0.5, t) with different truncation orders NW para (a) u = 4.5 and β = 1.0, (b) u = 4.5
and β = 0.5 and (c) u = 1.5 and β = 0.5.

Stability was analyzed by varying the dimensionless velocity, u, considering different mass ratios
β=0.1, 0.5 and 1.0 to obtain the eigenfrequencies. The behavior of the first three modes of
dimensionless frequency referring to the displacement of the pipe to β = 0.1 is illustrated in
Fig. 4. According to Fig.4(a), the eigenfrequencies are purely real and with increasing velocity,
the first frequency modes tend to decrease and disappear when u = π, that’s called first critical
velocity, uc, of the fluid. However, when u > uc the first modes are grouped on the axis Im,
becoming the eigenfrequencies purely imaginary, meaning loss of system’ stability2.

The same analysis was performed for the fundamental and second frequency modes, and it can be
seen in Fig. 4(b) that the second mode follows the same behavior as the first, but the frequency
of the second mode disappears when u = 2π, called the second critical system velocity. However,
in u > uc the first two modes merge and indicate the beginning of a coupled vibration.

(a) (b) (c)

Figure 4: Dimensionless complex frequency diagrams for a clamped-clamped pipe;(a) β = 0.1,
(b) β = 0.1 and (c) β = 0.1.

Modes 1-3 are illustrated in Fig.4(c), in which the system’s eigenfrequencies are purely real and
decrease to u = 2π and after that the values become purely imaginary, characterizing the loss
of system stability by divergence through a pitchfork bifurcation.
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Fig. 5 illustrates the real and imaginary part of the dimensionless eigenfrequencies for modes 1-3
as velocity changes, showing that eigenfrequencies decrease with increase of u and the system
loses stability due to divergence. Also, according to Fig. 2 the system’s eigenfrequencies are
purely real up to uc = 2π and after this velocity value, it becomes purely imaginary as reported
on the literature2.

(a) (b)

Figure 5: Real and imaginary components of the dimensionless frequency, ω, as functions of the
dimensionless flow velocity, u, for β = 0.1.

4. Conclusions

The application of the generalized integral transform technique (GITT) to obtaining the hybrid
solution of the dynamic response of a pipe conveying single-phase fluid has shown to be a
good approach to solving the physical problem proposed, presenting accurate results. Also, the
stability criterion studied demonstrated the flow velocity influence on the frequencies modes,
showing compatibility with the literature.
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